++aor
Alphabetical order
Computes whether a and b are in alphabetical order, producing a flag.
Accepts
a is a noun.
b is a noun.
Produces
A flag.
Source
++ aor
~/ %aor
|= [a=* b=*]
^- ?
?: =(a b) &
?. ?=(@ a)
?: ?=(@ b) |
?: =(-.a -.b)
$(a +.a, b +.b)
$(a -.a, b -.b)
?. ?=(@ b) &
|-
=+ [c=(end 3 1 a) d=(end 3 1 b)]
?: =(c d)
$(a (rsh 3 1 a), b (rsh 3 1 b))
(lth c d)
Examples
> (aor 'a' 'b')
%.y
> (aor 'b' 'a')
%.n
> (aor 'a' 'a')
%.y
> (aor "foo" "bar")
%.n
> (aor "bar" "foo")
%.y
> (aor "abcdefz" "abcdefa")
%.n
> (aor "abcdefa" "abcdefz")
%.y
> (aor 10.000 17.000)
%.y
> (aor 10 9)
%.n++dor
Numeric order
Computes whether a and b are in ascending numeric order, producing a flag.
Accepts
a is a noun.
b is a noun.
Produces
A flag.
Source
++ dor
~/ %dor
|= [a=* b=*]
^- ?
?: =(a b) &
?. ?=(@ a)
?: ?=(@ b) |
?: =(-.a -.b)
$(a +.a, b +.b)
$(a -.a, b -.b)
?. ?=(@ b) &
(lth a b)
Examples
> (dor 1 2)
%.y
> (dor 2 1)
%.n
> (dor ~[1 2 3] ~[1 2 4])
%.y
> (dor ~[1 2 4] ~[1 2 3])
%.n
> (dor `(list @)`~[99 100 10.000] ~[99 101 10.000])
%.y
> (dor ~[99 101 10.999] `(list @)`~[99 100 10.000])
%.nDiscussion
If a and b are both atoms, dor is equivalent to lte. If they're
cells, dor recurses on the heads, and then if the heads are the same it checks
the tails.
If one sample is a cell and the other is an atom, the cell sample is treated as "greater."
++gor
Hash order
Computes whether of (mug a) and (mug b) are in ascending numeric order,
producing a flag. If the mug hashes are equal, a and b are compared by
dor instead.
mug is the the 31-bit nonzero FNV-1a hash algorithm.
Accepts
a is a noun.
b is a noun.
Produces
A flag.
Source
++ gor
~/ %gor
|= [a=* b=*]
^- ?
=+ [c=(mug a) d=(mug b)]
?: =(c d)
(dor a b)
(lth c d)
Examples
> (gor 'd' 'c')
%.y
> 'd'
'd'
> 'c'
'c'
> `@ud`'d'
100
> `@ud`'c'
99
> (mug 'd')
1.628.185.714
> (mug 'c')
1.712.073.811
> (gor 'd' 'c')
%.y
> (gor 'c' 'd')
%.n
> (gor "foo" "bar")
%.n
> (gor (some 10) `(list @)`[1 2 3 ~])
%.nDiscussion
maps use gor on the key for horizontal ordering and vor for
vertical order. maps only look at the keys (the head of the key-value pair
elements) for ordering.
++hor
Horizontal hash order
If a and b are atoms, they are computed as samples of gor, producing a
flag.
If a and b are cells, hor checks to see if their heads are equal. If their
heads are equal, gor is computed on their tails, producing a flag. If their
heads are not equal, gor is computed on their heads, producing a flag.
If a is an atom and b is not, then %.y is produced. If b is an atom and
a is not, %.n is produced.
Accepts
a is a noun.
b is a noun.
Produces
A flag.
Source
++ hor
~/ %hor
|= [a=* b=*]
^- ?
?: ?=(@ a)
?. ?=(@ b) &
(gor a b)
?: ?=(@ b) |
?: =(-.a -.b)
(gor +.a +.b)
(gor -.a -.b)
Examples
> (hor . 1)
%.n
> (hor 1 2)
%.y
> (hor "abc" "cba")
%.y
> (hor 'c' 'd')
%.n
> (hor 100 [1 1])
%.y
> (hor [1 1] 100)
%.n
> (hor 500.000.000 "foo")
%.y
> (hor "foo" 500.000.000)
%.n
> (hor 0 "foo")
%.y
> (gor `(list @)`[0 ~] 1)
%.n
> (hor `(list @)`[50 500 5.000 ~] 1)
%.nDiscussion
Sets (+set, +in) use hor for their horizontal order and vor for their
vertical order. See apt:in to see how a set verifies its correctness.
vor is used to verify.
++lor
Leg order
Computes whether the corresponding legs of a and b are in ascending
numeric order, producing a flag.
Accepts
a is a noun.
b is a noun.
Accepts
A flag.
Source
++ lor
~/ %lor
|= [a=* b=*]
^- ?
?: =(a b) &
?@ a
?^ b &
(lth a b)
?: =(-.a -.b)
$(a +.a, b +.b)
$(a -.a, b -.b)
Examples
> (lor 1 2)
%.y
> (lor 2 1)
%.n
> (lor 9 [1 2])
%.y
> (lor `(list @)`[1 2 3 ~] `(list @)`[1 2 3 4 ~])
%.y
> (lor `(list @)`[1 2 3 ~] `(list @)`[1 2 2 ~])
%.n
> (lor `(list @)`[1 2 3 ~] `(list @)`[2 2 ~])
%.y
> (lor [2 2 5] [1 5 9 8])
%.n
> (lor [1 5 8] [1 5 9 8])
%.y
> (lor [1 2 3] [1 2])
!! exitDiscussion
lor is no longer used internally.
++vor
Vertical order
Computes whether the double-hashes (mug (mug a)) and (mug (mug b)) are in
ascending numeric order, producing a flag. If the double-mug hashes are
equal, a and b are compared by dor instead.
mug is the the 31-bit nonzero FNV-1a hash algorithm.
Accepts
a is a noun
b is a noun
Produces
A flag.
Source
++ vor
~/ %vor
|= [a=* b=*]
^- ?
=+ [c=(mug (mug a)) d=(mug (mug b))]
?: =(c d)
(dor a b)
(lth c d)
Examples
> (vor 'f' 'g')
%.y
> [(mug 'f') (mug 'g')]
[1.661.740.952 1.644.963.335]
> [(mug (mug 'f')) (mug (mug 'g'))]
[261.421.509 1.861.258.547]
> (vor 'a' 'z')
%.n
> (vor 43.326 41.106)
%.nDiscussion
Maps, sets, and queues all use vor to check for vertical ordering. Maps and
sets also use gor and hor for horizontal order, respectively, but queues use
vertical ordering alone.
Since hashing removes correlation, double-mugging with vor removes
correlation with single-mugged hor. Vertical order becomes uncorrelated
with horizontal order.